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INFLUENCE OF FLUID VISCOSITY AND PRESSURE ON SHELL VIBRATIONS IN A FLUID* 

N.N. RCGACHEVA 

It is shown that for a broad class of problems in shell theory the fluid 
viscosity can be taken into account by separating the system of viscous 
fluid equations into two subsystems, one of which is integrated in quad- 
ratures by taking account of the viscosity, while the other agrees with 
the Helmholtz equation. Consequently, the related problem for a shell 
making contact with a fluid is reduced to integration of the equations of 
shell theory with certain additional terms in combination with the 
Helmholtz equation. It is clarified that the hydrostatic fluid pressure 
only affects the resonance frequencies and the amplitudes of those 
vibrations that satisfy the definite conditions formulated below. 

1. The influence of fluid viscosity and hydrostatic pressure will be investigated 
separately for clarity. 

we introduce a curvilinear coordinate system a,, c+, a3 in such a way that the coordinate 
lines a, and a, agree OR the shell middle surface a3 = 0 with the lines of curvature, and the 
cs- lines are orthogonal to them. Later, to within the error allowable in shell theory, we 
will consider the shell surface in contact with the fluid to coincide with the shell middle 
surface u3 = 0 and the lines a3 to be straight near the shell. 

The equations of viscous fluid motion, neglecting non-linear terms, have the form 

Ps =--P-- i2yoVkuI, + i*elBp@ div v (1.1) 

Pkl= - ip tVkvl + vlvk) 

vkp= p002vX - i~&vI, - i r,&~V~divv 

p. div v + c@-"p = 0 

Here Vt are components of the displacement vector of the fluid particles, Pk ZZid Prt are 
stress tensor components, p is the sound pressure, p is the fluid viscosity,& is the fluid 
density, and cg is the speed of sound in the fluid. It is assumed that the fluid vibrations 
are caused.by vibrations of the shell which have the foxm e-'*', where o is the angular 
frequency, A is the Laplace operator in curvilinear coordinates, and the notation Vkni, V,P 
is given by the following formulas: 

Ne use the small parameter3 of shell theory , equal to the shell relative half-thickness, 
for an asymptotic analysis of the fluid equations. we will assume the variability of the 
desired fluid quantities in the coordinates ~,,a, to be the same near the shell as the 
desired shell-theory quantities 

a -a a 
-z+kK (I.21 

The subscripts n,m take the values 1, 2 everywhere while the subscripts k,l take the 
values 1, 2, 3, and R is the characteristic dimension of the shell. The index of variability 
s is found in such a manner that differentiation with respect to the dimensionless variables 
El does not result in a substantial increase or decrease in the desired functions. 

Moreover, we introduce the dimensionless frequency parameter h by the following formula 
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dR’p,/E = I@’ (1.3) 

The power 2r is selected so that the quantity h is commensurate with unity, and PI, E are 
the shell density and elastic modulus. 

The conditions that the shell and fluid displacement vectors be equal should be satisfied 
on the shell surface in contact with the fluid 

VII = n*, va=-w (1.4) 

(&I, w are the shell displacements). The equations and notation utilized below agree with 
those used in shell theory /l/. To be specific we will assume the fluid to be outside the 
shell. 

2. As is shown below, the displacement and stress field described by the system of 
equations of fluid motion (1.1) can be separated into two fields described by simpler systems 
of equations. 

We will agree to call the first of these fields damped. For vibrations of this kind, the 
fluid particle displacements VI, US tangential to the fluid surface are substantially greater 
than the normal displacements vs. These vibrations damp out rapidly with distance from the 
shell. The following asymptotic form , that does not result in contradictions 

u,lR = q”v,*, v.JR = q”---‘lLvQ~ (2.1) 
pn.31(Po~zR2) = rla-“zp713+ 
(p, pnm pm P,)l(P,~aR*) = vn-s-r (p** Pnnw Pnst ps*) 
~/(p&,) = A$“, c,~Ic,~ = B,qeab, a8 = qa-‘laRz 

should be taken for the desired magnitudes of the quasitangential fluid vibrations. 
As is customary in the asymptotic method, the exponents of n should be defined so that 

the dimensionless quantities (with the asterisks) are of the same order. The numbers A,B 
are of the order of one, and c, is the speed of sound in the shell material. 

We make the change of variables (1.2), we substitute (2.1) and (1.3) into (1.1) and 
consequently we obtain the equations 

n~~-~-rV,,*p*=v,,*- i(A/1/%)[[aau,,/c9za + 

n*a-s-rV12+u,*] + iAB I/%llaa-ab-rp.,J3 
(2.2) 

pna* = - i (av,*/az + Tya-rv,*v,*) 
av,,/az= -Vp,,- V,v,, - hBq2”-Bb+‘p* 

ap*laz = us* - i (A/i/X) [aa,,,/az* i- p-~-Tl,,v,,l + 
iA jfDhp-~+rap*laz 

P ,,m* = - i (All/q Pn&w + Vm,%+J 
P ,,*= - p*- 21 (A/I/g V,,v,,- 2iAB 1/~nza-zb-rp*/3 

Pa* - - - P* - 2i (A/1/1) au,,]& - 2iAB Jf1qzn-ab-+p,J3 

Discarding small terms of the order of (n2a-za-r +Pl"-2b+r), we obtain a simplified system 
of equations in which we note the desired quantities by the superscript (1): 

an&) 
n aasa + 1”oU~‘~O 

P 

(1) a#) 
Pn3=-~C10-&, 

a$) 
-g-&- = - vlvy - V& 

&l) 
g = PO&$) _ ip +_ , (i) 

pm=- ipco (V,u$ + v,vp, 

Pn - - p(l) - Bi~OV,L$', (1) _ p!’ = - p(l) _ 2+0 g 

(2.31 

We note that the fluid can be considered incompressible to the Customary accuracy for 
quasitangential vibrations. 

The solution of (2.3) has the following form (we present only those quantities that are 
required later) : 
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Here fn are arbitrary functions that enable the conditions that the tangential shell and 
fluid displacements be equal on the contact surface to be satisfied. 

An iteration process can be constructed to refine the desired magnitudes of the damped 
solution. After the first approximation has been found, the magnitudesofthe next, second, 
approximation are found from the system 

Formulas (2.5) have the same structure as (2.3) in the sense that the next approximation 
differs from the preceding one by just terms with lower subscripts, i.e., by known free terms. 

The second of the fields comprising the total fluid displacement and stress field should 
satisfy the condition of equality of the displacements normal to the contact surface. We 
agree to call it penetrating. We introduce its fluid potential CP by the following formulas: 

(24 

The asymptotic form of the principal desired magnitudes of the penetrating fluid vibrations 
agrees with the asymptotic form presented in /2/ for an ideal fluid. We write down the 
asymptotic representation of the desired fluid quantities 

(2.7) 

Taking account of (2.6) and (2.71, we can write (1.1) in asymptotic form. The terms 
taking account of the viscosity in the equations of the fluid penetrating vibrations are 
0 (@M4-r + #Mb+r) as compared with the principal terms, while they are much greater O(PY'-"* i 

n ), 
a-t-r/z in the fluid damped-vibrations equations , consequently to a first approximation the 

viscosity should be retained only in the fluid damped-vibrations equations. In this case to 
a first approximation the fluid penetrating vibrations will be described by the Helmholtz 
equation for an ideal fluid 

The defined desired quantities of the second approximation can be determined from the 
following recursion system in whose right sides are the known quantities found from (2.8) 
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pp’ + p(Q) = - i . ZpV,v~’ + i % pa div v(l) 

p$ + ip(Vk$) + VI@) = 0 

3. We write down the complete system of equations describing the motion of a shell making 
contact with a viscous fluid. We will use the method proposed in Sect.2 to separate the 
complete fluid stress and displacement field into two component fields by using the simplified 
formulas obtained above, to describe the fluid motion. 

The shell equilibrium equations are 

ac 
-+<++-2+k,(G,-G,,,)-k,(H.-H&-N.=@ 

k, = 

The non-penetration conditions are 

(gy +u,)I_=-w (3.2) 

Here pns and v8 are defined by the formulas 

To obtain a closed system, the Helmholtz Eq.(2.8), the elasticity relationships and the 
strain-displacement formulas /l/ should be added to (3.1) and (3.2). 

By investigating this system by an asymptotic method it can be shown that the fluid 
viscosity makes the greatest contribution, as might have been expected, to the quasitangential 
shell vibrations. In this case the terms taking account of the viscosity are of the order of 
(n""i-l*/a+ vtd-rtih) for s < I - d - b and O(~p+d-l+r/a + VI*) for .s> i -d - b as compared 
with the principal terms, where d is determined from the following formula: .pl/po= nd. 

As an illustration we will find the resonance frequencies of a circular cylindrical shell 
filled with a viscous fluid. We will assume that a shell of length LCLIR = I), radius R and 
thickness U performs axisyrmnetric quasitangential vibrations. If the fluid is ideal, the 
natural frequencies of the quasitangential shell vibrations are approximately equal to the 
natural frequencies of vibration of a shell without fluid. The equation of axisymmetric 
longitudinal vibrations in this case has the form 

(v is the longitudinal displacement and E is the longitudinal coordinate). 
In the case under consideration, for a viscous fluid we obtain the preceding equation 

from (3.11, in which 

The results of calculating of the dimensionless quantities a*= o21Rmin. proportional 
to the natural frequencies o are presented in Table 1: a) for a steel shell without fluid 
(they approximately equal the natural frequencies of a fluid-filled shell); b) for a shell 
making contact with water at O'C (p= 0.0017 kg/m.sec, and pO=iV kg/m3) 8 c) for a shell making 
contact with glycerine at 3'C(c=4.2 kg/m.sec and PO = 4.265 kg/m3). 

4. We will investigate the influence of hydrostatic pressure.on shell vibrations in a 
fluid. It has been shown /3/ that a preliminary static load influences the free shell vi- 

brations in a vacuum only when: a) the value of the static load is of the same order as the 
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critical load (i.e., the load which causes buckling within the framework of linear theory); 
b) the shell vibrations mode should be similar to the buckling mode under the effect of th,is 
static load. Table 1 

Table 2 

The validity of the rule formulated above is confirmed by a nuqerical computation carried 
out for a circular cylindrical shell submerged in water. The shell executes forced vibrations 
under the effect of a normal dynamical surface load changing according to the law A cos nfi sn 
bd&e-iotfB is the circumferential coordinate and e is the longitudinal coordinate). The 
relative shell thickness is 0.01, the radius is R = 1 m and the length is L= IR. 

The initial equations of the shell-fluid system differ from those presented in /4f just 
by a team taking account of the hydrostatic pressure in the third equilibrium equation of 

shell theory and equal to Tp@)x,, where i"p@' is determined from the solution of the static 
problem (a cylindrical shell subjected to hydrostatic pressure), x2 is the bending strain of 
the P-line. We consider the shell hinge-supported and enclosed in a stiff screen. 

To determine the pressure of the far sound field we use the usual method of solving this 
problem (see /4/, for example): we perform a Fourier integral transform in the longitudinal 
coordinate E, whereupon we obtain a system of equations with constant coefficients for the 
shell and the Bessel equation for the fluid. We find the second pressure far from the shell 
by applying an inverse Fourier transform to the solution and calculating the integral obtained 
by the stationary-phase method. 

We will compare the resonance frequencies found fox shells without taking account of the 
hydrostatic pressure (denoted by o,J and with the hydrostatic pressure taken into account (we 
denotethe appropriate resonance frequencies by o,J. 

The ratios wPloo are presented in Table 2 for different values of &p,t,n (p is the 

hydrostatic pressure acting on the shell, and p0 is the critical pressure). For the buckling 
mode we have m= 1, while the value of n depends on the shell length /5/ for fixed thickness 
and radius. The first three colums of Table 2 show numbers characterizing the vibrations that 
agree in mode with the buckling modes consequently, the resonance frequencies for the case 
when the hydrostatic pressure is 1.5 times less then the critical were reduced by JO-40% 
compared with the resonance frequencies found without taking account of the hydrostaticpressure. 
The fourth column gives analogous data for shell whose mode of vibration differs from the 
buckling mode, consequently, the influence of the hydrostatic pressure is negligible. 

Thus, a method of separation is proposed that enables substantial simplification of the 
integration of (1.1) to be achieved for a viscous fluid interacting with an elastic shell. 
The method is not suitable only in those cases when a certain factor dependent on the properties 
of the shell material and the fluidI is commensurate with unity. This hdas only for shells 
with a small modulus of elasticity and a fluid with high viscosity, It is shown that for 
shells submerged in the fluid, the order of magnitude of the hydrostatic pressure affecting 
definite modes of the shell vibrations can be indicated without solving the problem. 

1. 

2. 

3. 

4. 
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STATE OF STRESS AND STRAIN OF A SMALL NEIGHBOURHOOD OF THE APEX OF A WEDGE 
FOR A PHYSICAL NON-LINEARITY AND DIFFERENT BOUNDARY CONDITIONS* 

V.M. ALEKSANDROV and S.A. GRISHIN 

Three plane strain problems of a small neighbourhood of the apex of a 
physically non-linear incompressible wedge are investigated by the 
Cherepanov-Rice-Hutchinson method using a non-linear differential equation 
for the Airy stress function: Problem 1 - one face is free, and a smooth 
contact condition is given on the other; Problem 2 - one face if free, 
and a flexible inextensible cover plate is glued to the other; Problem 3 
- one fact is free and the condition of adhesion to a stiff flat stamp 
is given on the other. Numerical results are presented that illustrate 
the influence of the degree of non-linearity of the governing relationships 
and the wedge aperture angle on the solution. The method is also applied 
to the stream function which enables us to formulate an analogy between 
different plane problems and affords the possibility of extending it to 
the axisymmetric case. In many problems of the mechanics of a deformable 
solid, the investigation of the asymptotic form of the solution near an 
angular point of a domain occupied by a body plays a fundamental role. 
In the elastic case this question has been studied quite broadly and an 
extensive literature exists. The situation is more complicated if the 
governing relationships are non-linear. The majority of papers deal only 
with the case of a crack. This paper attempts to fill this gap somewhat. 

1. We consider the problem of the equilibrium of a wedge with apperture angle a from 
a material subjected to the law 

a,= ACT,,“‘, Ekk = 0, isij= o,,e&,, A, m = con&, m > 1 (1.1) 

(J, = 6-'1: [(ol - a# + (c, - a# + (c3 - cl)" + 60,,~ + 
60,,~ + 6c,,V: 

EU = 6"'~ [(e, - Q.)" + (Q - es)" + (~3 - .Q)~ + 6e$+ 6e,s2 tL 6es,21'/* 

Here SgJ are the components of the stress deviator in a certain orthonormalised basis, 

% is the stress intensity, QJ are the components of the strain or strain rate tensor 
depending on the specific model: if the problem of non-linear steady creep is considered, then 

QJ is the rate, if an elastic-plastic tension-compression diagram is described by (l.l), 
generally speaking, then $J are tensor components of small strain. There is no need to make 
the physical meaning of eiJ specific; by virtue of a well-known analogy the fundamental 
equations are written identically, and consequently, we will henceforth call ail the strain 
for brevity, and a,, the strain intensity. 

We assume the strain to be planar. In polar coordinates with centre of the wedge apex 
we have 
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